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A previously developed perturbatlon-theory-to—all-()rders formalism is applied to the oscﬂla 10n8

of a

“‘collisionless’” electron plasma which is bounded by perfectly reflecting walls. The long-time

damping rate is the same for the nth order electric field as for the first order. This result generally

does not apply to the unbounded plasma.
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I. INTRODUCTION

T has recently proved possible to give a full
solution’ to the problem of the linearized motions

of a “collisionless” electron plasma which is con-
fined by perfectly reflecting walls. The walls could
be infinite parallel plates, for the one-dimensional
case, or a rectangular parallelipiped. The device was
similar to the method of images; it was possible to
find a uniquely defined unbounded situation which
reduced to the desired result within the boundaries,
and which automatically satisfied the reflection con-
ditions for all time and all velocities. The tech-
niques of Landau® could then be applied to the
equivalent unbounded situation.

It is also possible, as was shown some time ago,
to give a perturbation-theory-to-all-orders solution
to the problem of the nonlinear oscillations of the
unbounded electron plasma. The main result of
reference 4 was to show that the phenomenon of
Landau damping, if present in first order (the lincar
Landau theory), will persist to all orders.

3,4

1 D. Montgomery and D. Gorman, Phys. Fluids 5, 947
(1962) See also S. “Gartenhaus, Phys. Fluids 6, 451 (1963)

2 L. D. Landau, J. Phys. (USSR) 10, 25 (1946)

3 D. Montgomery, Phys. Rev. 123, 1077 (1961).

1 D. Montgomer_v and D. Gorman, Phys. Rev. 124, 1309
(1961) [Erratum, Phys. Rev. 126, 2261 (1962)].

A matural question to ask, and one which could
not be answered previously, is: How does the nth-
order damping rate compare with the first-order
rate? This question is very involved for the un-
bounded case, but becomes almost trivial for the
bounded situation, by virtuc of the lower hound
on absolute value of allowed wavenumber which
is introduced by the walls. The result, as will be
seen below, is that the damping of the nth order
charge density (not distribution function) goes at
the same rate as for the first order for long times.

In Seec. II, the contents of reference 4 are sum-
marized, and what we hope is a more lucid and
graphic demonstration of the principal result of
reference 4 is provided. The previously stated result
for the nth order damping rate is proved in Sec. III.
Section IV discusses the result, and also contains
some comments on an alternative procedure which
has recently been put forward.

II. THE PERSISTENCE OF DAMPING

We restrict ourselves for simplicity to a one-dimen-
sional system. A “collisionless” electron (charge —e,
mass m) plasma is assumed to move through a uni-
form immobile background of positive charge of
density eN,. The electron distribution funection
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f(z, v, t) is assumed to obey the Boltzmann—Vliasov
equation,

of L, of e pdf
+ ” E Pl 0, (1a)
where .
) . ®
o 41re<2\’0 — ﬁwfdv>, (1b)
given f(z, v, 0) for all z, v.
We seek a formal solution of the type
E = Z ]’J("); Z f(n) (2)
1 [}

where terms with the same superseript arc assumed
to be of the same order in the amplitude. It is
assumed that of the various ™, only ' and [
are nonvanishing at ¢ = 0. If f = f,(v) is taken
to be the spatially homogencous part of f(z, v, 0),
then the » = 1 terms of the series (2) are identical
with the Landau result.” If we demand that the
disturbance (x, », 0) introduce no net charge
into the system, we have

f folv) dv = N; ff f e, v, 00 dedv = 0. (3)

If Fourier-Laplace transforms are taken,

o= [ Lo [Caeren @

d"L o

B = f dte ' E™(x, 1), (5)

it is straightforward to show that for = greater
than 1,

- e/ m

. I ppGogre, K (7:) N
kp p + 'L'/FL‘[L”' fU(l) + q/\p ]7 (0)
- 4xie’ 1 S dy _
(n)y __ I. -
hkp - mk ka c p + 1/]\1) (‘)
_ o, _ 4mie [ fi@) dv
ka = ’I’nli ¢ p + ’L']CL‘, (8)

(1)
w(n i) 8f
Bkt w

il

e[ ©

In the definition of D,,, the contour C is along
the real v axis for Re p > 0, and passcs around the
point v = #p/k if Re p < 0, as in the Landau theory.
The contour of p’ integration in (9) is such that,
on the contour:

(i) Re (p — p) is greater than the real parts
of all the singularities of E{*;,., considered as a
function of the complex variable p’;
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(ii) ¢ is a real number, greater than the real pa1 ts
of all the smgularltlos of afi!)./dv, considered as
function of p'.

So far, this defines the convolutions in Eq. (9) only
for Re p sufficiently large and positive. The pos-
sibilitics for analytically continuing them in the
direction of decreasing Re p (upon which the per-
sistence of damping depends) remain to be discussed.

We restrict ourselves to the “stable’ case: D, # 0
for Re p > 0, for any £ = 0.

Since 8™ contains only terms of order less than n,
and since we know the n = 1 solution, we have a
formal recipe for gencrating as many orders as we
like in powers of the amplitude. [Clearly, if f/f
is measured by an amplitude ¢, then S is O(€").]
The process may be viewed as one in which the
coupling terms 8™ feed the disturbance into the
higher orders as ¢ increases. For more physical dis-
tributions (e.g., Maxwellians) the integrals cannot
be done explicitly,® and we are forced to sce what
information can be extracted from the purely ana-
Iytic properties of the S;', considered as a function
of the complex variable p.

Observe that ¢f we can analytically continue
[ S do/(p + ikv) a finite distance into the left
half p plane for all k, then the inversion theorem for
Laplace transforms,

1 Y+io
() __ ptan)
EE@> 0 = 5o [ apeBY o)
tells us that E/7() = O(e™**") as t — =, where

a, (k) is real and positive. This is, of course, subject
to integrability requirements on S;» (v); but these
appear to be satisfied for all but the most patho-
logical i (r, 0) and f,(»), so we do not labor them
here. We assume, to avoid unphysical complications,
that:

(a) 1V (v, 0) and fo(v) are entire functions of v;

(b) both these functions and all their derivatives
with respect to v are absolutely integrable along
lines parallel to the real v axis, and are well behaved
and — 0 at infinity there;

(¢) 1" (v, 0) is absolutely integrable in k, and is
well behaved at infinity in k.

We assert without proof that these conditions
are sufficient to guarantee convergence of all the
integrals which appear below.

It will now be shown that [ S{Z dv/(p + <kv)

§ For distributions which are reciprocals of polynomlals,
the integrals can be done, at least through second order.
See H. B. Liemohn and F. L. Scarf, Phys. Fluids 6, 490 (1963),
Sec. 1V.
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can be analytically continued a finite distance into
the left half of its p plane for all Im p. Note that
this quantity vanishes for & 0; it is therefore
sufficient to show the result for & # 0. To do this,
it is necessary to know where the singularities of
E» and af{)'/0v are. The singularities of Ef)’, as

kp 1

is well known, are poles which lie on the solutions of

D, = 0. (1)

We call the solutions of (11) “p,(k)”. By hypoth-
esis, these must all lie in the left half p plane for
k # 0. This is true if f,(¢) is Maxwellian, though
the detailed shape of the p;(k) is not vet known
for all £.° For the following demonstration, no de-
tailed knowledge of p,(k) is necessary. For ease in
visualization, we represent the p,(k) as in Fig. 1,
though more exotic shapes would do equally well.
Nor would the following argument be invalidated
by possible branches in p, (k).

We are concerned with the analytic behavior of
the integral [ S22 dv/(p 4 ikv), where

oLi® (1)
) f dA'[ dﬁ E®N,. ., S

o

TFor a particular p, Re p > 0, the singularities
of the two terms appearing in the convolution (12)
lie on the curves shown in Fig. 2. The planc drawn
is the complex p’ plane, and tho singularities of
dfy,. /3 lie somewhere on the curves opening to the
left, while those of E{,. _, . liec somewhere on the
(dlsplaced) mirror-image curves in the right half-
Any of the allowed values of I, k' can be
chosen, and o can any p, with Re p > 0. The con-
tour of p’ integration is shown as a dashed line.

(12)

plane.

Re p=0
p=p; (k)
Fic. 1. The solu- -
tions of Dy, = 0 P
(schematic), with & Im P=0
considered as a
variable param-
eter. As £ — O, p=-iwp
Pz(lv) — 4= iwp.
p=p;(k)

¢ In fact, it seems likely that p.(k) has a doubly infinite
number of bmnches See J. N. Hayes, Phys. Fluids 4, 1387
(1961), and B. D. Fried and R. W. Gould, Phys. Flmds 4,
139 (1961). It can be shown, however, that for each k, there
emstsfa.krlgh(t)most pi(k), which lies to the left of the i imaginary
axis i #= 0.

-
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Re p=0 :
. ! W ’“
p=p; K} ; b,g’v\\*
|
| Koin
Peiwp
| erp
| Im_p=0
: #'D‘i“lp
pl"i“’p : \
—— pl“’\p
p=p; (K) : thegy
i

FiG. 2. The complex p’ plane for calculating the convolution
af Wy
fE(l)k_k,’ ey’ ;E)’LLdp'

(schematic) with Re p > 0. The singularitics of E®y_ir,pn_pr
lie on the curves in the right half-plane, those of 8fx , /3v on
those in the left. The contour of p’ integration is shown as a
dashed line.

There is also a pole of 4f)./dv at p’ —1k'v,
but the contour of ¢ integration can be deformed
to pass around it in the usual way, upon interchange
of [ dv and [ dp’, so it cannot contribute a singu-
larity to E(2’; therefore it is not shown in Fig. 2.
Clearly, the integral 1s nonsingular for Re p > 0.
Now allow p to move into its own left half-plane,
and observe how a singularity can arise. The con-
tour of p’ integration can be deformed to avoid
any of the singularities of the integrand (see Fig. 3)
until the time when the singularities of E,. ,_,.
and df;})./dv first meet. Then the singularities can
no longer be avoided, and a singularity of the con-
volution (considered as a function of p) can develop.
The firet time this can happen is for

— (k= k)
pP—0D P ), 13)

P’ = p:l),

for some k’. Eliminating p’,
possible singularities p,(k),

p(l) = p,(k = &) + p.(0).

1

Re d-o:
] )
/ [ h

4

and calling the new

(14

F1a. 3. The con-
tour deformed, for
Re p < 0. The
singularities may be
avoided until thefa
sin ulxritlos 0 ’ :
Et, 8 ppr “col- i iy
llde” w1th those of I\
f Wiy /v, as Re p N
decreases.

g
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As k' is allowed to range over its permissible
values (whichever ones are relevant to the problem
at hand), the maximum value of the real part of
the right-hand side of (14) is always a finite negative
number for £ ## 0. In the special case k = k' = 0,
E{,. ,_,. vanishes and no contribution can arise.
Thus [ S{(v) dv/(p + 1kv) can always be ana-
Iytically continued a finite distance into its left
half p plane.

It will be apparent that an inductive proof to
nth order involves nothing new, since, as can be
seen from (6) and (7), the only properties that need
be invoked are that E{}, --- | EX" be singularity-
free for &k £ 0, and Re p > some finite negative
number which may depend on k. It is not so clear
what the pictures will look like, and they may
become quite tangled. It is important to note that
for E{**® ) the [ dv must be taken inside all the
various convolution integrations, so that there will
be no contributions from p = —ike, p’ = —ik'y,
pll — _ik//v’ .

If the nth-order singularities [in addition to the
p:(k)] are to be called p.(k), these may arise at

Pak) = pu-i(k = K7) + pi(K). (15)

Here, jis allowed to run over the numbers 1,2, - -+ |
n — 1, and k' is to range over all its allowed values.
Most generally, these are all the additive combina-
tions of those wave numbers present in the first
order, where the sum is understood to contain up
ton — 1 terms.

Looking back at Eq. (7), it will be seen that there
are two types of possible singularities which can
contribute to the long-time behavior of E{” (t): the
zeros of 1), which are the same in any order; and
the singularities of the type of Eq. (13). The t — =
form of E;”(!) will be governed by which types
have the greater real parts for given k. This question
will now be discussed.

III. THE BOUNDED PLASMA

If all values of £, 0 < k] < e, are allowed to be
present in f{" (v, 0), the question of the “rightmost”
singularity of E;}’ becomes tricky. In fact, it is not
possible to bound the damping decrement from

below. For example, if one picks ' = 3k in Eq. (14),
Re p.(h) = 2 Rep.(30). (16)

Using the usual Landau expression” for Re p,(k)

% 3 2
e o []

wp is the plasma frequency, kj, is Debye’'s wavenumber.

-
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for the Maxwellian case,

Re p.(k) .
Re pi(k) 1y O (17)

The higher-order poles may move to the right of
any particular point in the left half-plane. However,
[ 1V (v, 0) dv is presumably also going to zero as
k — 0, so the question of relative damping rates
gets tangled up with the question of the details
of the initial wave packet.

The confusion is readily removed by any device
which will bound |k| away from zero. Such a device
is to confine the plasma' by perfectly reflecting
walls at = 0 and x = L, say.

It is shown in reference 1 that such a plasma is
equivalent to a certain unbounded plasma, but with
special restrictions. The plasma is defined outside
0 < z < L as having a perturbed distribution
f¥(x, v, 0) which is periodic with period 2L, de-
fined in the region —L < & < 0 by

fP>=z, 0,0 = f"(x, —v, 0). (18)
It follows at once that
1@, 0) = Z 8k — kofe @, 0),
k=0, & x/L, = 2x/L, -,  (19)
o (=, 0) = {950, 0), (20)
EY = —EY k= all k,, 1
fo' @) = f5.(=0). (22)

By virtue of Eq. (3), the k = 0 Fourier component
has no electric field associated with it. The lowest
value of |A} which is present in E[} is, therefore,

7['/]1 . (23)

l ]‘: {min =

The point is that the same method-of-images
technique applies to the nth order; indeed it is
easy to show that, given the conditions of (18)—(22)
and the formalism of See. I1,

SP0) = S (=v), n> 1, (24)

which satisfies the reflection condition, order by
order.®

Now cousider Eqgs. (14) and (15) for the present
situation. The values k, &' can only be selected
from the numbers 0, £n/L, £2=/L, --- , and not
more than one of the two can be zero. Generally,

p.(k = Zw/L) is the rightmost pole of E}}’, so it

. * Alternatively, one can view this as a result of the non-
linear invariance of Eqs. (1a), (1b) under the transforma-
tions (z, v) — (x + 2L, v); (z, v) = (—z, —v) for these
mltlalkconditions. I am indebted to C. D. Gorman for this
remark.
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is apparent that the rightmost singularity of Ej;
can never lie to the right of the rightmost pole
of E{). Since D, = 0 provides poles in every order,
the t — = behavior, as far as the damping rate
goes, is the same for every order.

IV. DISCUSSION

Insofar as the perfectly reflecting model is valid for
laboratory plasmas, and insofar as perturbation
theory to all orders is an accurate representation of
Eqgs. (1), the long-time Landau damping rate should
show no dependence upon amplitude. As far as we
are aware, experimental evidence on this point is
totally lacking. It can be made to seem plausible,
however, if we note that in the nth order, the system
to be solved is just the linearized Vlasov equation
with the inhomogeneous driving term S, which
consists of only lower-order, damped terms. Gen-
erally, the longest waves damp most slowly, so that
in the linear problem, these persist the longest.
In the nonlinear problem, however, one is no longer
free to specify which & values are present for all
time without actually doing a calculation; they are
in general quite mixed up by the . The function
of the walls is to provide a cutoff in & space below
which the disturbance cannot run.

As was the situation at the time of writing ref-
erence 4, a satisfactory proof of convergence, di-
vergence, or asymptoticity of the series represented
by (6) and (7) is still missing. In view of the com-
plicated form of the nth term of the series, it does
not appear likely that a proof will be forthcoming
in the immediate future. One of the purposes of this
calculation was to provide a qualitative prediction
by means of this expansion which might either be
verified or disproved by a numerical caleulation.

In this connection, two points should be made.
First, the present theory, like Landau’s, says
nothing about how long one has to wait before the
exponentially damped regime sets in; the result of
Sec. III concerns only the magnitude of the eventual
damping decrement. Second, when one speaks of

the limit { — =, one must bear in mind the following

limitation, first pointed out by Backus.” In the
usual linear Landau theory, the ratio which is being
neglected is [E af" /au|/|[EVf,(r)]. Due to the
presence of undamped terms in the perturbed dis-
tribution function which go as exp (—ihet), this
ratio is growing proportionally to ¢ Therefore,
eventually, the terms one iz throwing away become
as large as those one is keeping. If the perturbation
is measured by an amplitude e, then clearly this
-mokus, J. Math. Phys. 1, 178 (1960). See See. VIIL.
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limitation only becomes important after a time of
order 1 e. Since the Landau damping decrement is
independent of ¢, this does rot rule out the possibility
of seeing Landau damping for long times < O(1/e).
It isin this sense that the limit ¢ — « must be under-
stood in the preceding ecalculation. The difficulty,
unfortunately, is present to nth order also, and it
seems likely that it is an inherent property of
Vlasov’s equation. A rigorous analysis of the true
t — « behavior, of times > O(1/¢), might reveal
some other type of decay (say, as some power of 1/f).

The principal alternative to the present expansion
which has been put forward so far is the so-called
“quasi-linear” theory of electron plasma oscilla-
tions.” The following are features characteristic of
this theory:

(1) The relations

1 t(kz—wit compiex
f=to= g 2 [0 + G,

1

i (kr—wit) i
E = 35 2B ™0 + (CRZDL,

are assumed valid for all time (V" is just a normaliza-
tion constant).

(2) The kth Fourier component of the distribution
function is assumed to be given by

—e 1 4
fo = miw, — kv fo®)E,
for all time.
(3) The £ = 0 component of f, unexpanded, is

taken to be the definition of f,.

4) fois assumed (v be a “slowly varying” function
of time, which develops according to af,/9t =
a/dv (D df,/9v) where

D=2¢&/m" 2z 2 | E, ® 8w, — I).
%

(5) i is determined as a “slowly varying” func-

tion of time by the t — = Landau relation.

We must confess a lack of understanding of the
motivations, both physical and mathematical, of
these assumptions (none is awarded a proof).
Assumptions (1) and (2), particularly, scem to run
contrary to the entire body of results of the linear
theory, in which the equation for the electric field
is satisfied only in the t — = limit, and in which
the relation for the distribution function is never
satisfied, except for a highly singular (and therefore

AL AL Vedenov, K. P. Velikhov, R. Z. Sagdeev, Nuel.
Fusion 1, 82 (1961): ibid., 1962 Suppl., p. 463. A somewhat
similar theory dealing with the unstable case was put forward
at the 1961 Salzburg Conference by W. X, Drummond and

D. Pines, and will also appear in a Supplement to Nuclear
Fusion.
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physically unlikely) set of initial conditions." The
entire theory secems to be based on-a (tacit) attempt
to force too detailed an analogy between the be-
havior of a collisionless plasma and that of a fluid-
type continuous medium. Landau showed unequiv-
ocally that for finite times, all frequencies are
present in the spectrum of the kth Fourier component
of the electric field, for an arbitrary initial perturba-
tion. Any attempt to identify “time scales” on which
the various quantities evolve will call for a high
level of mathematical precision, indeed.

Note added in proof. Given the slab conditions
of Sec. ITI, a demonstration nearly identical to that
of Sec. I1 sho“s that, not only is £ singularity-
frec in the region Re p > 0, but {7 is also without
singularities in this region, except for a simple pole
at p = —ikv. This shows explicitly that this expan-
sion is not plagued by the ‘“‘secular terms’” which
accompany straightforward expansions in powers of
the particle interactions. [See: E. A. Frieman,
J. Math. Phys. 4, 410 (1963), and E. A. I'rieman,
S. Boduer, and P. Rutherford, Princeton Plasma
Physics Lab. Report MATT-169 (unpublished).]

The M terms of Backus, described in See. IV of
this present work, are of a qualitatively different
character from the usual “secular terms,” and have
not, to owr knowledge, been successfully handled
by anyone as yet. They are quite generally present
for both the bounded and unbounded ecases, and
are not contingent upon any special properties of
the Dy, function. The proof of the absence of the
ordinary “‘secular terms’ applies only in ecase there
is a lower bound in & space.
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APPENDIX: EQUIVALENCE OF THE NTH ORDER
NORMAL MODE AND LAPLACE TRANSFORM
SOLUTIONS

We include a demonstration of the equivalence
of the two methods of doing perturbation theory
to all orders given in reference 4—Laplace transform

1 N. G. van Kampen, Physica 21, 949 (1955). K. M.
Case, Ann, Phys. (N. Y.) 7, 349 (1‘)59)
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and singular normal mode. This is offered not so
much because it fits logically with the preceding
material, but because that it is felt that it remedies
a lack of reference 4.

To save space, we refer to reference 4 for notation.
The problem is to show that by substituting the
“initial value” of Eq. (41) of that paper,

(n) ’ 1(n)
0 = op [P S (25
mi v —
into the van Kampen-Case'' expression for

E’( > 0) as a functional of f{"’ (¢, 0), one arrives
at the same expression that one gets from Egs. (7)
and (10) of this communication. In (25), the SV
which appears is a Fourier transform, defined by
2780 = 8P if p = —dw.

Tor the van Kampen—Case E."” (¢t > 0), one has

A, e ™ dv,

EX(t >0 == (26)
(1) 2
Ay = lim[f fi @0 dv:l/|:1 — 4_7@5
0 — v — 2 mk
1) o ]
v — v — 1€ @7

Replacing f{¥(v, 0) by Lq. (25), and using the
Plemelj formula for the principal value function,
LP f SA(H;V:(U,) + *ql(r,,ll)cw’(v) d?}’

7
[

R i,(v’) + S0
T omi f v
(28)

where we have used the analyticity of S for
Imw > 0.
Noting that as ¢ — 0,

(4
N N SN <1¢))
v 271 i S,

'_U_’LE

[ Wy S0

@ —v =1 — v — e YT = — e
S )
PR = e S,

we have that

f_/ dv’ o uf(n)(v 0-)77 - 2L6 dv'’ q(") IL )

v — v — e PN m v/—v—u
(29)

Substituting into (26) and (27) gives:

2me [ A’ 8i7,0")

EX(> 0 =5 fm drt MLV =y = e
- dme [ fi@) dv _
mk® ) v — v — de
(30)

This is just what one gets from Eqgs. (7) and (10).




